
On the Cost of Factoring RSA-1024

Adi Shamir Eran Tromer

Weizmann Institute of Science
{shamir,tromer }@wisdom.weizmann.ac.il

Abstract

As many cryptographic schemes rely on the hardness
of integer factorization, exploration of the concrete
costs of factoring large integers is of considerable in-
terest. Most research has focused on PC-based im-
plementations of factoring algorithms; these have suc-
cessfully factored 530-bit integers, but practically can-
not scale much further. Recent works have placed
the bottleneck at the sieving step of the Number Field
Sieve algorithm. We present a new implementation of
this step, based on a custom-built hardware device that
achieves a very high level of parallelism ”for free”.
The design combines algorithmic and technological
aspects: by devising algorithms that take advantage
of certain tradeoffs in chip manufacturing technology,
efficiency is increased by many orders of magnitude
compared to previous proposals. Using this hypothet-
ical device (and ignoring the initial R&D costs), it ap-
pears possible to break a 1024-bit RSA key in one year
using a device whose cost is about $10M (previous
predictions were in the trillions of dollars).

1 Introduction

The security of many cryptographic schemes and pro-
tocols depends on the hardness of finding the factors
of large integers drawn from an appropriate distribu-

tion. The best known algorithm for factoring large in-
tegers is the Number Field Sieve (NFS)1, whose time
and space complexities are subexponential in the size
of the composite. However, little is known about the
real complexity of this problem. The evident confi-
dence in the hardness of factoring comes from observ-
ing that despite enormous interest, no efficient factor-
ing algorithm has been found.

To determine what key sizes are appropriate for a
given application, one needs concrete estimates for the
cost of factoring integers of various sizes. Predicting
these costs has proved notoriously difficult, for two
reasons. First, the performance of modern factoring
algorithms is not understood very well: their com-
plexity analysis is often asymptotic and heuristic, and
leaves large uncertainty factors. Second, even when
the exact algorithmic complexity is known, it is hard
to estimate the concrete cost of a suitable hypothetical
large-scale computational effort using current technol-
ogy; it’s even harder to predict what this cost would
be at the end of the key’s planned lifetime, perhaps a
decade or two into the future.

Due to these difficulties, common practice is to
rely on extrapolations from past factorization exper-
iments. Many such experiments have been performed
and published; for example, the successful factoriza-
tion of a 512-bit RSA key in 1999 [5] clearly indicated

1See [10] for the seminal works and [17] for an introduction.
The subtask we discuss is defined in Section 2.1.

the insecurity of such keys for many applications, and
prompted a transition to 1024-bit keys (often necessi-
tating software or hardware upgrades).2 The current
factorization record, obtained nearly four years later
in March 2003, stands at 530 bits [1].3 From this data,
and in light of the subexponential complexity of the
algorithm used, it seems reasonable to surmise that
factoring 1024-bit RSA keys, which are currently in
common use, should remain infeasible for well over a
decade.

However, the above does not reflect a fundamen-
tal economy-of-scale consideration. While the pub-
lished experiments have employed hundreds of work-
stations and Cray supercomputers, they have always
used general-purpose computer hardware. However,
when the workload is sufficiently high (either be-
cause the composites are large or because there are
many of them to factor), it becomes more efficient
to construct and employ custom-built hardware ded-
icated to the task. Direct hardware implementation
of algorithms is considerably more efficient than soft-
ware implementations, and makes it possible to elim-
inate the expensive yet irrelevant peripheral hardware
found in general-purpose computers. An example of
this approach is the EFF DES Cracker [7], built in
1998 at a cost of $210,000 and capable of breaking
a DES key in expected time of 4.5 days using 36864
search units packed into 1536 custom-built gate array
chips. Indeed, its equipment cost per unit of through-
put was much lower than similar experiments that
used general-purpose computers.

Custom-built hardware can go beyond efficient im-
plementation of standard algorithms — it allow spe-
cialized data paths, enormous parallelism and can
even use non-electronic physical phenomena. Taking
advantage of these requires new algorithms or adapta-
tion of existing ones. One example is the TWINKLE
device [18, 13], which implements the sieving step of

2Earlier extrapolations indeed warned of this prospect.
3Better results were obtained for composites of a special form,

using algorithms which are not applicable to RSA keys.

the NFS factoring algorithm using a combination of
highly parallel electronics and an analog optical adder.

Recently, D. J. Bernstein made an important ob-
servation [3] about the major algorithmic steps in the
NFS algorithm. These steps have a huge input, which
is accessed over and over many times. Thus, tradi-
tional PC-based implementations are very inefficient
in their use of storage: a huge number of storage bits
is just sitting in memory, waiting for a single pro-
cessor to access them. Most of the previous work
on NFS cost analysis (with the notable exception of
[21]) considered only the number of processor instruc-
tions, which is misleading because the cost of mem-
ory greatly outweighs the cost of the processor. In-
stead, one should consider the equipment cost per unit
of throughput, i.e., the construction cost multiplied by
the running time per unit of work.

Following this observation, Bernstein presented a
new parallel algorithm for the matrix step of the NFS
algorithm, based on a mesh-connected array of pro-
cessors. Intuitively, the idea is to attach a simple pro-
cessor to each block of memory and execute a dis-
tributed algorithm among these processors to get bet-
ter utilization of the memory. With this algorithm, and
by changing some adjustable parameter in the NFS al-
gorithm so as to minimize “cost per unit of through-
put” rather than instruction count, Bernstein’s algo-
rithm allows one to factor integers that are 3.01 times
longer compared to traditional algorithms (though
only 1.17 times longer when the traditional algorithms
are re-optimized for throughput cost). Subsequent
works [14, 8] evaluated the practicality of Bernstein’s
algorithm for 1024-bit composites, and suggested im-
proved versions that significantly reduced its cost.
With these hypothetical (but detailed) designs, the cost
of the matrix step was brought down from trillions of
dollars [21] to at most a few dozen million dollars (all
figures are for completing the task in 1 year).

This left open the issue of the other major step
in the Number Field Sieve, namely the sieving step.

2

For 1024-bit composites it was predicted that siev-
ing would require trillions of dollars,[21]4 and would
be impractical even when using the TWINKLE de-
vice. This article discusses a new design for a custom-
hardware implementation of the sieving step, which
reduces this cost to about $10M. The new device,
called TWIRL5, can be seen as an extension of the
TWINKLE device. However, unlike TWINKLE it
does not have optoelectronic components, and can
thus be manufactured using standard VLSI technol-
ogy on silicon wafers. The underlying idea is to use
a single copy of the input to solve many subproblems
in parallel. Since input storage dominates cost, if the
parallelization overhead is kept low then the resulting
speedup is obtained essentially for free. Indeed, the
main challenge lies in achieving this parallelism effi-
ciently while allowing compact storage of the input.
Addressing this involves myriad considerations, rang-
ing from number theory to VLSI technology. The re-
sulting design is sketched in the following sections,
and a more detailed description appears in [19].

2 Context

2.1 The Sieving Task

The TWIRL device is specialized to a particular task,
namely the sieving task which occurs in the Number
Field Sieve (and also in its predecessor, the Quadratic
Sieve). This section briefly reviews the sieving prob-
lem, with many simplifications.

The inputs of the sieving problem areR ∈ Z (sieve
line width), T > 0 (threshold) and a set of pairs(pi,ri)
where thepi are the prime numbers smaller than some
factor base boundB. There is, on average, one pair

4 [15] gave a lower bound of about $160M for a one-day ef-
fort. This disregarded memory, but is much closer to our results
since the new device greatly reduces the amortized cost of mem-
ory.

5TWIRL stands for The Weizmann Institute Relation Locator.

per such prime. Each pair(pi,ri) corresponds to an
arithmetic progressionPi = {a : a ≡ ri (mod pi)}.
We are interested in identifying the sieve locationsa ∈
{0, . . . ,R−1} that are members of many progressions
Pi with largepi:

g(a) > T where g(x) =
∑

i:a∈Pi

logh pi

for some small constanth. It is permissible to have
“small” errors in this threshold check; in particular, we
round all logarithms to the nearest integer. For eacha
that exceeds the threshold, we also need to find the set
{i : a ∈ Pi} of progressions that contribute tog(a).

We shall concentrate on 1024-bit composites and
a particular choice of the adjustable NFS parameters,
with R = 1.1 · 1015 andB = 3.5 · 109. We need
to performH = 2.7 · 108 such sieving tasks, called
sieve lines, that have different (though related) inputs.6

The numerical values that appear below refer to this
specific parameter choice.

2.2 Traditional Sieving

The traditional method of performing the sieving task
is a variant of Eratosthenes’s algorithm for finding
primes. It proceeds as follows. An array of accumula-
torsC[a] is initialized to0. Then, the progressionsPi

are considered one by one, and for eachPi the indices
a ∈ Pi are calculated and the valuelogh pi is added to
every suchC[a]. Finally, the array is scanned to find
thea values whereC[a] > T . The point is that when
looking at a specificPi its members can be enumer-
ated very efficiently, so the amortized cost of alogh pi

contribution is low.

When this algorithm is implemented on a PC, we
cannot apply it to the full rangea = 0, . . . ,R−1 since

6In fact, for each sieve line we need to perform two sieves: a
“rational sieve” and an “algebraic sieve” (see Section 3.3). The
parameters given here correspond to the rational sieve, which is
responsible for most (two thirds) of the device’s cost.

3

there would not be enough RAM to storeR accumu-
lators. Thus, the range is broken into smaller chunks,
each of which is processed as above. However, if
the chunk size is not much larger thanB then most
progressions make very few contributions (if any) to
each chunk, so the amortized cost per contribution in-
creases. Thus, a large amount of memory is required,
both for the accumulators and for storing the input
(that is, the list of progressions). As Bernstein [3]
observed, this is inherently inefficient because each
memory bit is accessed very infrequently.

2.3 Sieving with TWINKLE

An alternative way of performing the sieving was pro-
posed in the TWINKLE device [18, 13], which oper-
ates as follows. Each TWINKLE device consists of a
wafer containing numerous independent cells, each in
charge of a single progressionPi. After initialization
the device operates synchronously forR clock cycles,
corresponding to the sieving range{0 ≤ a < R}. At
clock cyclea, the cell in charge of the progressionPi

emits the valueloghpi iff a ∈ Pi. The values emitted
at each clock cycle are summed to obtaing(x), and if
this sum exceeds the thresholdT then the integera is
reported. This event is announced back to the cells, so
that thei values of the pertainingPi is also reported.

The global summation is done using analog op-
tics: to “emit” the valuelog pi, a cell flashes an inter-
nal LED whose intensity is proportional tolog pi. A
light sensor above the wafer measures the total light
intensity in each clock cycle, and reports a success
when this exceeds a given threshold. The cells them-
selves are implemented by simple registers and rip-
ple adders. To support the optoelectronic operations,
TWINKLE uses Gallium Arsenide wafers (alas, these
are relatively small, expensive and hard to manufac-
ture compared to silicon wafers, which are readily
available). Compared to traditional sieving, TWIN-
KLE exchanges the roles of space and time:

Traditional TWINKLE
Sieve locations Space (accumulators) Time

Progressions Time Space (cells)

3 TWIRL

3.1 Approach

The TWIRL device follows the time-space reversal
of TWINKLE, but increases the throughput by simul-
taneously processing thousands of sieve locations at
each clock cycle. Since this is done with (almost) no
duplication of the input, the equipment cost per unit
of throughput decreases dramatically. Equivalently,
we can say that the cost of storing the huge input is
amortized across many parallel processes.

As a first step toward TWIRL, consider an elec-
tronic variant of TWINKLE which still operates at a
rate of one sieve location per clock cycle, but does so
using a pipelined systolic chain of electronic adders.7

Such a device would consist of a long unidirectional
bus, 10 bits wide, that connects millions of conditional
adders in series. Each conditional adder is in charge
of one progressionPi; when activated by an associ-
ated timer, it adds the valueloghpi to the bus. At time
t, the z-th adder handles sieve locationt − z. The
first value to appear at the end of the pipeline isg(0),
followed byg(1), . . . ,g(R), one per clock cycle. See
Fig. 1(a).

The parallelization is obtained by handling the sieve
range{0, . . . ,R − 1} in consecutive chunks of length
s = 4096.8 To do so, the bus is thickened by a fac-
tor of s and now containss logical lines, where each
line carries10-bit numbers. At timet, thez-th stage
of the pipeline handles the sieve locations(t−z)s+ i,

7This variant was considered in [13], but deemed inferior in
that context.

8s = 4096 applies to the rational sieve. For the algebraic sieve
(see Section 3.3) we use even higher parallelism:s = 32768.

4

)(

+0(

) +0(

) +0(

) +0() +1(

) +1(

) +1(

) +1(

+1() +2(

) +2(

) +2(

) +2(

) +2(

) +1(

) +1(

) +1(

) +1(

) +1(

)

)+0t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

−3

−4

−1

−2

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

p1

p3

p5

p2

p4

p1

p3

p5

p2

p4

(a) (b)

s()−1

s()−1

s()−1

s()−1

s()−1

Figure 1: Flow of sieve locations through the device in (a) a chain of adders and (b) TWIRL.

i ∈ {0, . . . ,s−1}. The first values to appear at the end
of the pipeline are{g(0), . . . ,g(s−1)}; they appear si-
multaneously, followed by successive disjoint groups
of sizes, one group per clock cycle. See Fig. 1(b).

We now have to add theloghpi contributions to all
s lines in parallel. Obviously, the naive solution of du-
plicating all the adderss times gains nothing in terms
of equipment cost per unit of throughput. If we try to
use the TWINKLE-like circuitry without duplication,
we encounter difficulties in scheduling and communi-
cating the contributions across the thick bus: the sieve
locations flow down the bus (in Fig. 1(b), vertically),
and the contributions should somehow travel across
the bus (horizontally) and reach an appropriate adder
at exactly the right time.

Accordingly, we replace the simple TWINKLE-like
cells by other units that perform scheduling and rout-
ing. Each such unit, called astation, handles some
small portion of the progressions; its interface consists
of bus input, bus output, clock and some circuitry for
loading the inputs. The stations are connected serially
in a pipeline, and at the end of the bus (i.e., at the out-
put of the last station) we place a threshold check unit
that produces the device output.

While the function of all the stations is identical, we
use a heterogeneous architecture that employs three
different station designs — thepi come in a very large
range of sizes, and different sizes involve very differ-
ent design tradeoffs. The progressions are partitioned
into stations according to the size of their intervalspi,
and the optimal station design is employed in each
case.

Due to space limitations, we describe only the most
important station design, which is used for the ma-
jority of progressions. The other station designs, and
additional details, can be found in [19].

3.2 Large primes

For every prime smaller thanB = 3.5·109 there is (on
average) one progression. Thus the majority of pro-
gressions have intervalspi that are much larger than
s = 4096, so they produceloghpi contributions very
seldom. For 1024-bit composites there is a huge num-
ber (about1.6 · 108) of such progressions; even with
TWINKLE’s simple emitter cells, we could not fit all
of them into a single wafer. The primary considera-

5

tion is thus to store these progressions as compactly
as possible, while maintaining a low cost per contri-
bution. Indeed, we will succeed in storing these pro-
gressions in compact DRAM-type memory using only
sequential (and thus very efficient) read/write access.
This necessitates additional support logic, but its cost
is amortized across many progressions. This efficient
storage lets us fit 4 independent 1024-bit TWIRL de-
vices (each of which iss = 4096 times faster than
TWINKLE) into a single 30cm silicon wafer.

The station design for these progressions (namely,
those withpi > 5.2·105) is shown in Fig. 2 (after some
simplifications). The progressions are partitioned into
8,490 memory banks, so that each bank contains many
(between32 and2.2·105) progressions. Each progres-
sion is stored in one of these memory banks, where at
any given time it is represented by aneventof the form
(pi, `i, τi), whose meaning is: “at time τi, send

a loghpi contribution to bus line `i. ”

Each memory bank is connected to a special-
purpose processor, which continuously processes
these events and sends correspondingemissionsof the
form “add loghpi to bus line `i” to attached de-
livery lines, which span the bus. Each delivery line
acts as a shift register that carries the emissions across
the bus. Additionally, at every intersection between
a delivery line and a bus line there is a conditional
adder9; when the emission reaches its destination bus
line `i, the valueloghpi is added to the value that
passes through that point of the bus pipeline at that
moment.

Thus, sieve locations are (logically) flowing down
the bus at a constant velocity, and emissions are be-
ing sent across the bus at a constant velocity. To en-
sure that each emission “hits” its target at the right
time, the two perpendicular flows must be perfectly

9We use carry-save adders, which are very compact and have
low latency (the tradeoff is that the bus lines now use a redun-
dant representation of the sums, which doubles the bit-width of
the bus).

synchronized, which requires a lot of care. However,
the benefit is that the cost per contribution is very low:
most of the time the event is stored very compactly in
the form of an event in DRAM; then, for a brief mo-
ment it occupies the processor, and finally it occupies
a delivery line for the minimum possible duration —
the amount of time needed to travel across the bus to
the destination bus line.

It is the processor’s job to ensure accurate schedul-
ing of emissions.10 The ideal way to achieve this
would be to store the events in a priority queue that
is sorted by the emission timeτi. Then, the processor
would simply repeat the following loop:11

1. Pop the next event(pi, `i, τi) from the priority
queue.

2. Wait until time τi and then send an emission to
the delivery line, addressed to bus line`i.

3. Compute the next event(pi, `
′
i, τ

′
i) of this pro-

gression, and push it into the priority queue.

Standard implementations of priority queues (e.g., the
heap data structure) are unsuitable for our purposes,
due to the passive nature of standard DRAM and high
latency. First, the processor would need to make a log-
arithmic number of memory accesses at each iteration.
Worse yet, these memory accesses occur at unpre-
dictable places, and thus incur a significant random-
access overhead. Fortunately, by taking advantage of
the unique properties of the sieving problem we can
get a good approximation of a priority queue that is
highly efficient.

Briefly, the idea is as follows. The events are read
sequentially from memory (step 1 above) in a cyclic
order, at constant rate. When the new calculated event

10In the full design [19], there is an additional component,
called abuffer, which performs fine-tuning and load balancing.

11For simplicity, here we ignore the possibility of collisions.

6

Pr
oc

es
so

r
Pr

oc
es

so
r

Memory

Pr
oc

es
so

r
Memory

Memory

Figure 2: Schematic structure of a (simplified) largish station.

is written back to memory (step 3 above), it is written
to a memory address that will be read just before its
schedule timeτ ′

i . Since bothτ ′
i and the read schedule

are known, this memory address is easily calculated
by the processor. In this way, after a short stabilization
period the processor always reads imminent events,12

exactly as desired. Each iteration now involves just
one sequential-access read operation and one random-
access write operation. In addition, it turns out that
with appropriate choice of parameters we can cause
the write operations to always occur in a small window
of activity, just behind the “read head”. We may thus
view the8,490 memory banks as closed rings of var-
ious sizes, with an active window “twirling” around
each ring at a constant linear velocity. Each such slid-
ing window is handled by a fast SRAM-based cache,
whose content is swapped in and out of DRAM in
large blocks. This allows the bulk of events to be held
in DRAM. Better yet, now the only interface to the
DRAM memory is through the SRAM cache; this al-
lows elimination of various peripheral circuits that are
needed in standard DRAM.

12Collisions are handled by adding appropriate slacks.

3.3 Other Highlights

Other station designs. For progressions with small
interval (pi < 5.2 · 105), it is inefficient to contin-
uously shuttle the progression state to and from pas-
sive memory. Thus, each progression is handled by
an independent activeemittercell that includes an in-
ternal counter (similarly to TWINKLE). An emitter
serves multiple bus lines, using a variant of the de-
livery lines described above. Using certain algebraic
tricks, these cells can be made very compact. Two
such station designs are used: for the progressions
with medium-sized intervals, many progressions share
the same delivery lines (since emissions are still not
very frequent); this requires some coordination logic.
For very small intervals, each emitter cell has its own
delivery line.

Diaries. Recall that in addition to finding the sieve
locationsa whose contributions exceed the threshold,
we also want to find the sets{i : a ∈ Pi} of rele-
vant progressions. This is accomplished by adding a
diary to each processor (it suffices to handle the pro-
gressions with large interval). The diary is a memory
bank which records every emission sent by the pro-
cessor and saves it for a few thousand clock cycles
— the depth of the bus pipeline. By that time, the

7

corresponding sieve locationa has reached the end of
the bus and the accumulated sum of logarithmsg(a)
was checked. If the threshold was exceeded, this is
reported to all processors and the corresponding diary
entries are recalled and collected. Otherwise, these di-
ary entries are discarded (i.e., their memory is reused).

Cascading the sieves.In the Number Field Sieve we
have to perform two sieving tasks in parallel: ara-
tional sievewhose parameters were given above, and
an algebraic sievewhich is usually more expensive
since it has a large value ofB. However, we suc-
ceed in greatly reducing the cost of the algebraic sieve
by using an even higher parallelization factor for it:
s = 32,768. This is made possible by an alteration
that greatly reduces the bus width: the algebraic sieve
needs only to consider the sieve locations that passed
the rational sieve, i.e., about one in 5,000. Thus we
connect the input of the algebraic sieve to the output of
the rational sieve, and in the algebraic sieve we replace
the thick bus and delivery lines by units that consider
only the sieve locations that passed the rational sieve.
We now have a much narrower bus containing only
32 lines, though each line now carries both a partial
sum (as before) and the indexa of the sieve location
to which the sum belongs. Logically, the sieve loca-
tions still travel in chunks of sizes, so that the regular
and predictable timing is preserved. Physically, only
the “relevant” locations (at most 32) in each chunk are
present; emissions addressed to the rest are discarded.

Fault tolerance. The issue of fault tolerance is very
important, as silicon wafers normally have multiple
local faults. When the wafer contains many indepen-
dent small chips, one usually discards the faulty ones.
However, for 1024-bit composites TWIRL is a wafer-
scale design and thus must operate in the presence of
faults. All large components of TWIRL can be made
fault-tolerant by a combination of techniques: routing
around faults, post-processing and re-assigning faulty
units to spare. We can tolerate occasional transient
faults since the sieving task allows a few errors; only
the total number of gooda values matters.

4 Cost

Based on the detailed design, we estimated the cost
and performance of the TWIRL device using today’s
VLSI technology (namely, the0.13µm process used
in many modern memory chips and CPUs). While
these estimates are hypothetical, they rely on a de-
tailed analysis and should reasonably reflect the real
cost. It should be stressed that the NFS parameters as-
sumed are partially based on heuristic estimates. See
[19] for details.

1024-bit composites.Recall that to implement NFS
we have to perform two different sieving tasks, a ratio-
nal sieve and an algebraic sieve, which have different
parameters. Here, the rational sieve (whose param-
eters were given above) dominates the cost. For this
sieve, a TWIRL device requires15,960mm2 of silicon
wafer area, so we can fit 4 of them on a 30cm silicon
wafer. Most of the device area is occupied by the large
progressions (and specifically,37% of the device is
used for their DRAM banks). For the algebraic sieves
we use a higher parallelization factor,s = 32,768.
One algebraic TWIRL device requires65,900mm2 of
silicon wafer area — a full wafer — and here too most
of the device is occupied by the largish progressions
(the DRAM banks occupy66%).

The devices are assembled in clusters that con-
sist of 8 rational TWIRLs (occupying two wafers)
and 1 algebraic TWIRL (on a third wafer), where
each rational TWIRL has a unidirectional link to
the algebraic TWIRL over which it transmits12 bits
per clock cycle. A cluster handles a full sieve line
in R/32,768 clock cycles, i.e.,33.4 seconds when
clocked at 1GHz. The full sieving involvesH sieve
lines, which would require194 years when using a
single cluster (after a heuristic that rules out33% of
the sieve locations). At a cost of$2.9M (assum-
ing $5,000 per wafer), we can build194 indepen-
dent TWIRL clusters that, when run in parallel, would
complete the sieving task within 1 year.

8

After accounting for the cost of packaging, power
supply and cooling systems, adding the cost of PCs
for collecting the data and leaving a generous error
margin,13 it appears realistic that all the sieving re-
quired for factoring 1024-bit integers can be com-
pleted within 1 year by a device that costs$10M to
manufacture. In addition to this per-device cost, there
would be an initial NRE cost on the order of$20M
(for design, simulation, mask creation, etc.).

512-bit composites. Since 512-bit factorization is
well-studied [18, 13, 8] and backed by experimental
data [5], it is interesting to compare 512-bit TWIRL
to previous designs. We shall use the same 512-bit pa-
rameters as in [13, 8], though they are far from optimal
for TWIRL. With s = 1,024, we can fit 79 TWIRLs
into a single silicon wafer; together, they would han-
dle a sieve line in 0.00022 seconds (compared to 1.8
seconds for TWINKLE wafer and 0.36 seconds for
a full wafer using mesh-based design of [8]). Thus,
in factoring 512-bit composites the basic TWIRL de-
sign is about1,600 times more cost effective than the
best previously published design [8], and8,100 times
more cost effective than TWINKLE. Such a wafer full
of TWIRLs, which can be manufactured for about
$5,000 in large quantities, can complete the sieving for
512-bit composites in under 10 minutes (this is before
TWIRL-specific optimizations which would halve the
cost, and using the standard but suboptimal parameter
choice).

768-bit composites. For 768-bit composites, a sin-
gle wafer containing 6 TWIRL clusters can complete
the sieving in 95 days. This wafer would cost about
$5,000 to manufacture — one tenth of the RSA-768
challenge prize [20]. Unfortunately these figures are
not easy to verify experimentally, nor do they provide
a quick way to gain $45,000, since the initial NRE cost
remains $10M-$20M.

13It is a common rule of thumb to estimate the total cost as
twice the silicon cost; to be conservative, we triple it.

5 Conclusions

It has been often claimed that 1024-bit RSA keys are
safe for the next 15 to 20 years, since when applying
the Number Field Sieve to such composites both the
sieving step and the linear algebra step would be un-
feasible (e.g., [4, 21] and a NIST guideline draft [16]).
However, these estimates relied on PC-based imple-
mentations. We presented a new design for a custom-
built hardware implementation of the sieving step,
which relies on algorithms that are highly tuned for
the available technology. With appropriate settings of
the NFS parameters, this design reduces the cost of
sieving to about $10M (plus a one-time cost of $20M).
Recent works [14, 9] indicate that for these NFS pa-
rameters, the cost of the matrix step is even lower.

Our estimates are hypothetical and rely on numer-
ous approximations; the only way to learn the precise
costs involved would be to perform a factorization ex-
periment. However, it is difficult to identify any spe-
cific issue that may prevent a sufficiently motivated
and well-funded organization from applying the Num-
ber Field Sieve to 1024-bit composites within the next
few years. This should be taken into account by any-
one planning to use a 1024-bit RSA key.

Acknowledgment.This work was inspired by Daniel
J. Bernstein’s insightful work on the NFS matrix step,
and its adaptation to sieving by Willi Geiselmann
and Rainer Steinwandt. We thank the latter for in-
teresting discussions of their design and for suggest-
ing an improvement to ours. We are indebted to Ar-
jen K. Lenstra for many insightful discussions, and
to Robert D. Silverman, Andrew “bunnie” Huang,
Michael Szydlo and Markus Jakobsson for valuable
comments and suggestions. Early versions of [12] and
the polynomial selection programs of Jens Franke and
Thorsten Kleinjung were indispensable in obtaining
refined estimates for the NFS parameters.

9

References

[1] F. Bahr, J. Franke, T. Kleinjung, M. Lochter,
M. Böhm, RSA-160, e-mail announcement,
Apr. 2003, http://www.loria.fr/
˜zimmerma/records/rsa160

[2] Daniel J. Bernstein,How to find small factors of
integers, manuscript, 2000,http://cr.yp.
to/papers.html

[3] Daniel J. Bernstein,Circuits for integer factor-
ization: a proposal, manuscript, 2001,http:
//cr.yp.to/papers.html

[4] Richard P. Brent,Recent progress and prospects
for integer factorisation algorithms, proc. CO-
COON 2000, LNCS 1858 3–22, Springer-
Verlag, 2000

[5] S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen,
P.L. Montgomery, B. Murphy, H.J.J. te Riele,
et al., Factorization of a 512-bit RSA modu-
lus, proc. Eurocrypt 2000, LNCS1807 1–17,
Springer-Verlag, 2000

[6] Don Coppersmith,Modifications to the number
field sieve, Journal of Cryptology,6(3) 169–180,
1993

[7] Electronic Frontier Foundation, DES
Cracker Project, http://www.eff.org/
descracker

[8] Willi Geiselmann, Rainer Steinwandt,A dedi-
cated sieving hardware, proc. PKC 2003, LNCS
2567254–266, Springer-Verlag, 2002

[9] Willi Geiselmann, Rainer Steinwandt,Hard-
ware to solve sparse systems of linear equations
over GF(2), proc. CHES 2003, LNCS, Springer-
Verlag, to appear.

[10] Arjen K. Lenstra, H.W. Lenstra, Jr., (eds.),The
development of the number field sieve, Lecture
Notes in Math.1554, Springer-Verlag, 1993

[11] Arjen K. Lenstra, Bruce Dodson,NFS with
four large primes: an explosive experiment,

proc. Crypto ’95, LNCS963372–385, Springer-
Verlag, 1995

[12] Arjen K. Lenstra, Bruce Dodson, James Hughes,
Wil Kortsmit, Paul Leyland,Factoring estimates
for a 1024-bit RSA modulus, proc. Asiacrypt
2003, LNCS, Springer-Verlag, to appear.

[13] Arjen K. Lenstra, Adi Shamir,Analysis and opti-
mization of the TWINKLE factoring device, proc.
Eurocrypt 2002, LNCS1807 35–52, Springer-
Verlag, 2000

[14] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson,
Eran Tromer,Analysis of Bernstein’s factoriza-
tion circuit, proc. Asiacrypt 2002, LNCS2501
1–26, Springer-Verlag, 2002

[15] Arjen K. Lenstra, Eric R. Verheul,Selecting
cryptographic key sizes, Journal of Cryptology,
14(4) 255–293, 2002

[16] NIST, Key management guidelines,
Part 1: General guidance (draft), Jan.
2003, http://csrc.nist.gov/
CryptoToolkit/tkkeymgmt.html

[17] Carl Pomerance,A Tale of Two Sieves, Notices
of the AMS, 1473–1485, Dec. 1996

[18] Adi Shamir, Factoring large numbers with the
TWINKLE device (extended abstract), proc.
CHES’99, LNCS1717 2–12, Springer-Verlag,
1999

[19] Adi Shamir, Eran Tromer,Factoring large num-
bers with the TWIRL device, proc. Crypto 2003,
LNCS2729, Springer-Verlag, 2003

[20] RSA Security, The new RSA factor-
ing challenge, web page, Jan. 2003,
http://www.rsasecurity.com/
rsalabs/challenges/factoring/

[21] Robert D. Silverman, A cost-based secu-
rity analysis of symmetric and asymmetric
key lengths, Bulletin 13, RSA Security,
2000, http://www.rsasecurity.com/
rsalabs/bulletins/bulletin13.
html

10

http://www.loria.fr/~zimmerma/records/rsa160
http://www.loria.fr/~zimmerma/records/rsa160
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://www.eff.org/descracker
http://www.eff.org/descracker
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://www.rsasecurity.com/rsalabs/challenges/factoring/
http://www.rsasecurity.com/rsalabs/challenges/factoring/
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html

	Abstract
	1 Introduction
	2 Context
	2.1 The Sieving Task
	2.2 Traditional Sieving
	2.3 Sieving with TWINKLE

	3 TWIRL
	3.1 Approach
	3.2 Large primes
	3.3 Other Highlights

	4 Cost
	5 Conclusions
	References

